# Flow polytopes in algebra and combinatorics 

Karola Mészáros

Cornell University
Based on joint works with Laura Escobar, Alex Fink, June Huh, Kabir Kapoor, Jacob Matherne, Alejandro Maris, Alejandro Morales, Brendon Rhoades, Linus Setiabrata, Avery St. Dizier

## Volume and discrete volume

$P$ a polytope in $\mathbb{R}^{N}$ with integral vertices
$\operatorname{vol}(P)$ is normalized volume with respect to underlying lattice

## Volume and discrete volume

$P$ a polytope in $\mathbb{R}^{N}$ with integral vertices
$\operatorname{vol}(P)$ is normalized volume with respect to underlying lattice
(0.0) $)^{(1.1)} \operatorname{vol}(P)=1$

## Volume and discrete volume

$P$ a polytope in $\mathbb{R}^{N}$ with integral vertices
$\operatorname{vol}(P)$ is normalized volume with respect to underlying lattice
$(0.0))^{(1.1)} \operatorname{vol}(P)=1$


## Volume and discrete volume

$P$ a polytope in $\mathbb{R}^{N}$ with integral vertices
$\operatorname{vol}(P)$ is normalized volume with respect to underlying lattice
$\# P \cap \mathbb{Z}^{N}$ number of lattice points (discrete volume)

## Volume and discrete volume

$P$ a polytope in $\mathbb{R}^{N}$ with integral vertices
$\operatorname{vol}(P)$ is normalized volume with respect to underlying lattice
$\# P \cap \mathbb{Z}^{N}$ number of lattice points (discrete volume)
$L_{P}(t):=\# t P \cap \mathbb{Z}^{N} \quad$ Ehrhart polynomial of $P$

## Volume and discrete volume

$P$ a polytope in $\mathbb{R}^{N}$ with integral vertices
$\operatorname{vol}(P)$ is normalized volume with respect to underlying lattice
$\# P \cap \mathbb{Z}^{N}$ number of lattice points (discrete volume)
$L_{P}(t):=\# t P \cap \mathbb{Z}^{N} \quad$ Ehrhart polynomial of $P$

$$
\left.L_{P}^{(1)} 1\right)=t+1
$$

## Volume and discrete volume

$P$ a polytope in $\mathbb{R}^{N}$ with integral vertices
$\operatorname{vol}(P)$ is normalized volume with respect to underlying lattice
$\# P \cap \mathbb{Z}^{N}$ number of lattice points (discrete volume)
$L_{P}(t):=\# t P \cap \mathbb{Z}^{N} \quad$ Ehrhart polynomial of $P$

$$
\left.(0.0)_{(0,1)}^{(1,1)} L_{P}(t)=t+1,1,2\right) L_{P}(t)=\frac{3}{2} t^{2}+\frac{5}{2} t+1
$$

## Volume and discrete volume

$P$ a polytope in $\mathbb{R}^{N}$ with integral vertices
$\operatorname{vol}(P)$ is normalized volume with respect to underlying lattice
$\# P \cap \mathbb{Z}^{N}$ number of lattice points (discrete volume)
$L_{P}(t):=\# t P \cap \mathbb{Z}^{N} \quad$ Ehrhart polynomial of $P$
volume and number of lattice points of $P$ are related:
$\operatorname{vol}(P) / \operatorname{dim}(P)!=$ leading coefficient $L_{P}(t)$

## Flow polytopes

$G$ directed graph on $n+1$ vertices
$\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ netflow
$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$

## Flow polytopes

$G$ directed graph on $n+1$ vertices
$\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ netflow
$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$
Example


## Flow polytopes

$G$ directed graph on $n+1$ vertices
$\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ netflow
$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$
Example

$$
x_{12}+x_{13}+x_{14}=a_{1}
$$



## Flow polytopes

$G$ directed graph on $n+1$ vertices
$\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ netflow
$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$
Example

$$
\begin{aligned}
& x_{12}+x_{13}+x_{14}=a_{1} \\
& x_{23}+x_{24}-x_{12}=a_{2}
\end{aligned}
$$



## Flow polytopes

$G$ directed graph on $n+1$ vertices
$\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ netflow
$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$
Example

$$
\begin{aligned}
& x_{12}+x_{13}+x_{14}=a_{1} \\
& x_{23}+x_{24}-x_{12}=a_{2} \\
& x_{34}-x_{13}-x_{23}=a_{3}
\end{aligned}
$$



## Flow polytopes

$G$ directed graph on $n+1$ vertices
$\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ netflow
$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $\left.x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid \operatorname{netflow}(i)=a_{i}\right\}$
Example

$$
\begin{aligned}
& x_{12}+x_{13}+x_{14}=a_{1} \\
& x_{23}+x_{24}-x_{12}=a_{2} \\
& x_{34}-x_{13}-x_{23}=a_{3}
\end{aligned}
$$



Lattice points of $\mathcal{F}_{G}(\mathbf{a})$ are integral flows on $G$ with netflow a.
Let $K_{G}(\mathbf{a}):=L_{\mathcal{F}_{G}(\mathbf{a})}(1)$.

## Kostant partition function

When $G$ is complete graph $k_{n+1}, K_{k_{n+1}}(\mathbf{a})$ is called the Kostant partition function.
$K_{k_{n+1}}(\mathbf{a})=\#$ of ways of writing a as an $\mathbb{N}$-combination of vectors

$$
e_{i}-e_{j}, 1 \leq i<j \leq n+1
$$

## Kostant partition function

When $G$ is complete graph $k_{n+1}, K_{k_{n+1}}(\mathbf{a})$ is called the Kostant partition function.
$K_{k_{n+1}}(\mathrm{a})=\#$ of ways of writing a as an $\mathbb{N}$-combination of vectors

$$
e_{i}-e_{j}, 1 \leq i<j \leq n+1
$$



## Kostant partition function

When $G$ is complete graph $k_{n+1}, K_{k_{n+1}}(\mathbf{a})$ is called the Kostant partition function.
$K_{k_{n+1}}(\mathrm{a})=\#$ of ways of writing a as an $\mathbb{N}$-combination of vectors

$$
e_{i}-e_{j}, 1 \leq i<j \leq n+1
$$



Formulas for Kostka numbers and Littlewood-Richardson coefficients in terms of $K_{k_{n+1}}(\mathbf{a})$.

## Examples of flow polytopes

$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$

Example

$$
x_{1}+x_{2}+x_{3}+x_{4}=1 \quad G
$$



## Examples of flow polytopes

$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$

Example

$$
x_{1}+x_{2}+x_{3}+x_{4}=1 \quad G
$$


$\mathcal{F}_{G}(\mathbf{a})$ is a simplex


## Examples of flow polytopes

$$
\mathcal{F}_{G}(\mathbf{a})=\left\{\text { flows } x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid \text { netflow }(i)=a_{i}\right\}
$$

Example
$G$ is the complete graph $k_{n+1}$

$$
\mathbf{a}=(1,0, \ldots, 0,-1)
$$



## Examples of flow polytopes

$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$

Example
$G$ is the complete graph $k_{n+1}$

$$
\mathbf{a}=(1,0, \ldots, 0,-1)
$$


$\mathcal{F}_{k_{n+1}}(1,0, \ldots, 0,-1)$ is called the Chan-Robbins-Yuen $\left(C R Y_{n}\right)$ polytope

## Examples of flow polytopes

$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$

Example
$G$ is the complete graph $k_{n+1}$
$\mathbf{a}=(1,0, \ldots, 0,-1)$

$\mathcal{F}_{k_{n+1}}(1,0, \ldots, 0,-1)$ is called the Chan-Robbins-Yuen $\left(C R Y_{n}\right)$ polytope
has $2^{n-1}$ vertices, dimension $\binom{n}{2}$


## Examples of flow polytopes

$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$

Example
$G$ is the complete graph $k_{n+1}$
$\mathbf{a}=(1,0, \ldots, 0,-1)$

$\mathcal{F}_{k_{n+1}}(1,0, \ldots, 0,-1)$ is called the Chan-Robbins-Yuen $\left(C R Y_{n}\right)$ polytope (conjecture Chan-Robbins-Yuen 99)

- $\operatorname{vol}\left(C R Y_{n}\right)=C_{1} \cdots C_{n-2}$
(Zeilberger 99)


## More examples of flow polytopes

## Example

$G$ is the complete graph $k_{n+1}$

$$
\mathbf{a}=(1,1, \ldots, 1,-n)
$$



## More examples of flow polytopes

## Example

$G$ is the complete graph $k_{n+1}$
$\mathbf{a}=(1,1, \ldots, 1,-n)$

$\mathcal{F}_{k_{n+1}}(1,1, \ldots, 1,-n)$ is called the Tesler polytope

## More examples of flow polytopes

## Example

$G$ is the complete graph $k_{n+1}$
$\mathbf{a}=(1,1, \ldots, 1,-n)$

$\mathcal{F}_{k_{n+1}}(1,1, \ldots, 1,-n)$ is called the Tesler polytope
has $n$ ! vertices, dimension $\binom{n}{2}$


Theorem (M, Morales, Rhoades 2014)
volume equals $\# \operatorname{SYT}(n-1, n-2, \ldots, 2,1) \cdot C_{1} C_{2} \cdots C_{n-1}$

## More examples of flow polytopes

## Example

$G$ is the complete graph $k_{n+1}$
$\mathbf{a}=(1,1, \ldots, 1,-n)$


Theorem (M, Morales, Rhoades 2014)
volume equals $\# \operatorname{SYT}(n-1, n-2, \ldots, 2,1) \cdot C_{1} C_{2} \cdots C_{n-1}$

Combinatorial proof?
Relation to CRY?


## Examples of flow polytopes

$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$

Example (Baldoni-Vergne 2008)


$$
a_{1} \quad a_{2} \quad a_{3} \quad-a_{1}-a_{2}-a_{3}
$$

## Examples of flow polytopes

$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$

Example (Baldoni-Vergne 2008)


$$
a_{1} \quad a_{2} \quad a_{3} \quad-a_{1}-a_{2}-a_{3}
$$

$x_{1}+y_{1}=a_{1} \quad \longrightarrow \quad x_{1} \leq a_{1}$

## Examples of flow polytopes

$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$

Example (Baldoni-Vergne 2008)


$$
a_{1} \quad a_{2} \quad a_{3} \quad-a_{1}-a_{2}-a_{3}
$$

$x_{1}+y_{1}=a_{1} \quad \longrightarrow \quad x_{1} \leq a_{1}$
$x_{2}+y_{2}-y_{1}=a_{2} \quad \longrightarrow \quad x_{1}+x_{2} \leq a_{1}+a_{2}$

## Examples of flow polytopes

$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$

Example (Baldoni-Vergne 2008)


$$
a_{1} \quad a_{2} \quad a_{3} \quad-a_{1}-a_{2}-a_{3}
$$

$x_{1}+y_{1}=a_{1} \quad \longrightarrow \quad x_{1} \leq a_{1}$

$$
x_{2}+y_{2}-y_{1}=a_{2} \quad \longrightarrow \quad x_{1}+x_{2} \leq a_{1}+a_{2}
$$

$$
x_{3}+y_{3}-y_{2}=a_{3} \quad \longrightarrow \quad x_{1}+x_{2}+x_{3} \leq a_{1}+a_{2}+a_{3}
$$

## Examples of flow polytopes

$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$

Example (Baldoni-Vergne 2008)


$$
a_{1} \quad a_{2} \quad a_{3} \quad-a_{1}-a_{2}-a_{3}
$$

$x_{1}+y_{1}=a_{1} \quad \longrightarrow \quad x_{1} \leq a_{1}$
$x_{2}+y_{2}-y_{1}=a_{2} \quad \longrightarrow \quad x_{1}+x_{2} \leq a_{1}+a_{2}$
$x_{3}+y_{3}-y_{2}=a_{3} \quad \longrightarrow \quad x_{1}+x_{2}+x_{3} \leq a_{1}+a_{2}+a_{3}$
$\mathcal{F}_{\Pi_{n+1}}(\mathbf{a})$ is the Pitman-Stanley polytope

## Pitman-Stanley polytope

$$
\begin{aligned}
& \mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n} \\
& \operatorname{PS}_{n}(\mathbf{a})=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{\geq 0}^{n}\right.
\end{aligned}
$$

$$
\begin{aligned}
x_{1} & \leq a_{1} \\
x_{1}+x_{2} & \leq a_{1}+a_{2}
\end{aligned}
$$

$$
x_{1}+\cdots+x_{n} \leq a_{1}+\cdots+a_{n}
$$

Example


## Pitman-Stanley polytope

$$
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}
$$

$\operatorname{PS}_{n}(\mathbf{a})=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{\geq 0}^{n}\right.$

$$
\begin{aligned}
x_{1} & \leq a_{1} \\
x_{1}+x_{2} & \leq a_{1}+a_{2}
\end{aligned}
$$

$$
x_{1}+\cdots+x_{n} \leq a_{1}+\cdots+a_{n}
$$




## Pitman-Stanley polytope

$$
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}
$$

$\operatorname{PS}_{n}(\mathbf{a})=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{\geq 0}^{n}\right.$

$$
\begin{aligned}
x_{1} & \leq a_{1} \\
x_{1}+x_{2} & \leq a_{1}+a_{2}
\end{aligned}
$$

$$
x_{1}+\cdots+x_{n} \leq a_{1}+\cdots+a_{n}
$$




- $2^{n}$ vertices, $n$ dimensional, is a generalized permutahedron


## Generalized permutahedra



Volume of the Pitman-Stanley polytope
Theorem (Pitman-Stanley 01)

$$
\begin{aligned}
\operatorname{vol} \mathrm{PS}_{n}(\mathbf{a}) & =\sum_{\mathbf{j} \succeq(1, \ldots, 1)}\binom{n}{j_{1}, \ldots, j_{n}} a_{1}^{j_{1}} \cdots a_{n}^{j_{n}} \\
j_{1}+\cdots+j_{n} & =n, j_{1}, \ldots, j_{n} \geq 0
\end{aligned}
$$

## Volume of the Pitman-Stanley polytope

Theorem (Pitman-Stanley 01)

$$
\begin{aligned}
\operatorname{vol} \mathrm{PS}_{n}(\mathbf{a}) & =\sum_{\mathbf{j} \succeq(1, \ldots, 1)}\binom{n}{j_{1}, \ldots, j_{n}} a_{1}^{j_{1}} \cdots a_{n}^{j_{n}} \\
j_{1}+\cdots+j_{n} & =n, j_{1}, \ldots, j_{n} \geq 0
\end{aligned}
$$

Example

$$
\begin{aligned}
\operatorname{vol} P S_{2}\left(a_{1}, a_{2}\right) & =2 a_{1} a_{2}+a_{1}^{2} \\
& =a_{1} a_{2}+a_{2} a_{1}+a_{1}^{2}
\end{aligned}
$$



## Volume of the Pitman-Stanley polytope

Theorem (Pitman-Stanley 01)

$$
\begin{aligned}
\operatorname{vol} \mathrm{PS}_{n}(\mathbf{a}) & =\sum_{\mathbf{j} \succeq(1, \ldots, 1)}\binom{n}{j_{1}, \ldots, j_{n}} a_{1}^{j_{1}} \cdots a_{n}^{j_{n}} \\
j_{1}+\cdots+j_{n} & =n, j_{1}, \ldots, j_{n} \geq 0
\end{aligned}
$$

## Example

$$
\begin{aligned}
\operatorname{vol} P S_{2}\left(a_{1}, a_{2}\right) & =2 a_{1} a_{2}+a_{1}^{2} \\
& =a_{1} a_{2}+a_{2} a_{1}+a_{1}^{2}
\end{aligned}
$$

$$
j_{1}+j_{2}=2, j_{1}, j_{2} \geq 0, j_{1} \geq 1, j_{1}+j_{2} \geq 2
$$

## Volume of the Pitman-Stanley polytope

Theorem (Pitman-Stanley 01)

$$
\begin{aligned}
\operatorname{vol} \mathrm{PS}_{n}(\mathbf{a}) & =\sum_{\mathbf{j} \succeq(1, \ldots, 1)}\binom{n}{j_{1}, \ldots, j_{n}} a_{1}^{j_{1}} \cdots a_{n}^{j_{n}} \\
j_{1}+\cdots+j_{n} & =n, j_{1}, \ldots, j_{n} \geq 0
\end{aligned}
$$

## Example

$$
\begin{aligned}
\operatorname{vol} P S_{2}\left(a_{1}, a_{2}\right) & =2 a_{1} a_{2}+a_{1}^{2} \\
& =a_{1} a_{2}+a_{2} a_{1}+a_{1}^{2}
\end{aligned}
$$

$\operatorname{vol} P S_{3}\left(a_{1}, a_{2}, a_{3}\right)=6 a_{1} a_{2} a_{3}+3 a_{1}^{2} a_{2}+3 a_{1} a_{2}^{2}+3 a_{1}^{2} a_{3}+a_{1}^{3}$

## Volume of the Pitman-Stanley polytope

Theorem (Pitman-Stanley 01)

$$
\begin{aligned}
\operatorname{vol} \operatorname{PS}_{n}(\mathbf{a}) & =\sum_{\mathbf{j} \geq(1, \ldots, 1)}\binom{n}{j_{1}, \ldots, j_{n}} a_{1}^{j_{1}} \cdots a_{n}^{j_{n}} \\
j_{1}+\cdots+j_{n} & =n, j_{1}, \ldots, j_{n} \geq 0
\end{aligned}
$$

## Example

$\operatorname{volP} S_{2}\left(a_{1}, a_{2}\right)=2 a_{1} a_{2}+a_{1}^{2}$

$$
=a_{1} a_{2}+a_{2} a_{1}+a_{1}^{2}
$$

$\operatorname{volPS_{3}(a_{1},a_{2},a_{3})=6a_{1}a_{2}a_{3}+3a_{1}^{2}a_{2}+3a_{1}a_{2}^{2}+3a_{1}^{2}a_{3}+a_{1}^{3},~}$

Proof via a subdivision where each term corresponds to the volume of a cell in subdivision

## Lattice points of the Pitman-Stanley polytope

Theorem (Pitman-Stanley, Gessel 01)

$$
L_{\mathrm{PS}_{n}(\mathbf{a})}(t)=\sum_{\mathbf{j} \succeq(1, \ldots, 1)}\left(\binom{a_{1} t+1}{j_{1}}\right)\left(\binom{a_{2} t}{j_{2}}\right) \cdots\left(\binom{a_{n} t}{j_{n}}\right)
$$

## Lattice points of the Pitman-Stanley polytope

Theorem (Pitman-Stanley, Gessel 01)

$$
L_{\mathrm{PS}_{n}(\mathbf{a})}(t)=\sum_{\mathbf{j} \succeq(1, \ldots, 1)}\left(\binom{a_{1} t+1}{j_{1}}\right)\left(\binom{a_{2} t}{j_{2}}\right) \cdots\left(\binom{a_{n} t}{j_{n}}\right)
$$

$\binom{m}{n}$ is " $m$ multichoose $k$ "

## Lattice points of the Pitman-Stanley polytope

Theorem (Pitman-Stanley, Gessel 01)

$$
L_{\mathrm{PS}_{n}(\mathbf{a})}(t)=\sum_{\mathbf{j} \succeq(1, \ldots, 1)}\left(\binom{a_{1} t+1}{j_{1}}\right)\left(\binom{a_{2} t}{j_{2}}\right) \cdots\left(\binom{a_{n} t}{j_{n}}\right)
$$

$\binom{m}{n}$ ) is " $m$ multichoose $k$ "
$\binom{3}{2}=6$, counting $\{1,1\},\{1,2\},\{1,3\},\{2,2\},\{2,3\},\{3,3\}$

## Lattice points of the Pitman-Stanley polytope

Theorem (Pitman-Stanley, Gessel 01)

$$
L_{\mathrm{PS}_{n}(\mathbf{a})}(t)=\sum_{\mathbf{j} \succeq(1, \ldots, 1)}\left(\binom{a_{1} t+1}{j_{1}}\right)\left(\binom{a_{2} t}{j_{2}}\right) \cdots\left(\binom{a_{n} t}{j_{n}}\right)
$$

$\binom{m}{n}$ is " $m$ multichoose $k$ "
$\binom{3}{2}=6$, counting $\{1,1\},\{1,2\},\{1,3\},\{2,2\},\{2,3\},\{3,3\}$
$\left.\binom{m}{n}\right)=\binom{m+n-1}{n}$

## Lattice points of the Pitman-Stanley polytope

Theorem (Pitman-Stanley, Gessel 01)

$$
L_{\mathrm{PS}_{n}(\mathbf{a})}(t)=\sum_{\mathbf{j} \succeq(1, \ldots, 1)}\left(\binom{a_{1} t+1}{j_{1}}\right)\left(\binom{a_{2} t}{j_{2}}\right) \cdots\left(\binom{a_{n} t}{j_{n}}\right)
$$

Corollary

$$
L_{\mathrm{PS}_{n}(\mathbf{a})}(t) \in \mathbb{N}[t]
$$

## Summary

$\mathcal{F}_{G}(\mathbf{a})=\left\{\right.$ flows $x(\epsilon) \in \mathbb{R}_{\geq 0}, \epsilon \in E(G) \mid$ netflow $\left.(i)=a_{i}\right\}$

Examples

- $\mathcal{F}_{k_{n+1}}(\mathrm{a})$ : CRY polytope $(\mathrm{a}=(1,0, \ldots, 0,-1))$, Tesler polytope ( $\mathrm{a}=(1,1, \ldots, 1,-n)$ ); volumes divisible by $C_{1} \cdots C_{n-2}$
- $\mathcal{F}_{\Pi_{n+1}}(\mathrm{a})$ : Pitman-Stanley polytope, explicit volume and lattice point formulas related to parking functions.

Question

- Is there a formula for volume and lattice points of $\mathcal{F}_{G}(\mathrm{a})$ ?


## Lidskii volume formula

Theorem (Baldoni-Vergne 08, Postnikov-Stanley - unpublished)
$G m$ edges, $n+1$ vertices, $a_{i} \geq 0$

$$
\begin{aligned}
\operatorname{vol} \mathcal{F}_{G}\left(a_{1}, \ldots, a_{n}\right)= & \sum_{\mathbf{j} \succeq \mathbf{0}}\binom{m-n}{j_{1}, \ldots, j_{n}} a_{1}^{j_{1}} \cdots a_{n}^{j_{n}} \\
& \times K_{G}\left(j_{1}-o_{1}, \ldots, j_{n}-o_{n}, 0\right)
\end{aligned}
$$

where $\mathbf{o}=\left(o_{1}, \ldots, o_{n}\right), o_{v}=\operatorname{outdeg}(v)-1$ and $|\mathbf{j}|=m-n$.

## Lidskii volume formula

Theorem (Baldoni-Vergne 08, Postnikov-Stanley - unpublished)
$G m$ edges, $n+1$ vertices, $a_{i} \geq 0$

$$
\begin{aligned}
\operatorname{vol} \mathcal{F}_{G}\left(a_{1}, \ldots, a_{n}\right)= & \sum_{\mathbf{j} \succeq \mathbf{0}}\binom{m-n}{j_{1}, \ldots, j_{n}} a_{1}^{j_{1}} \cdots a_{n}^{j_{n}} \\
& \times K_{G}\left(j_{1}-o_{1}, \ldots, j_{n}-o_{n}, 0\right)
\end{aligned}
$$

where $\mathbf{o}=\left(o_{1}, \ldots, o_{n}\right), o_{v}=\operatorname{outdeg}(v)-1$ and $|\mathbf{j}|=m-n$.
Pitman-Stanley polytope:


$$
\operatorname{vol} \mathcal{F}_{\Pi_{n+1}}(\mathbf{a})=\sum_{\mathbf{j} \succeq(1, \ldots, 1)}\binom{n}{j_{1}, \ldots, j_{n}} a_{1}^{j_{1}} \cdots a_{n}^{j_{n}} \cdot 1
$$

## Lidskii volume formula

Theorem (Baldoni-Vergne 08, Postnikov-Stanley - unpublished)
$G m$ edges, $n+1$ vertices, $a_{i} \geq 0$

$$
\begin{aligned}
\operatorname{vol} \mathcal{F}_{G}\left(a_{1}, \ldots, a_{n}\right)= & \sum_{\mathbf{j} \succeq \mathbf{0}}\binom{m-n}{j_{1}, \ldots, j_{n}} a_{1}^{j_{1}} \cdots a_{n}^{j_{n}} \\
& \times K_{G}\left(j_{1}-o_{1}, \ldots, j_{n}-o_{n}, 0\right)
\end{aligned}
$$

where $\mathbf{o}=\left(o_{1}, \ldots, o_{n}\right), o_{v}=\operatorname{outdeg}(v)-1$ and $|\mathbf{j}|=m-n$.

## Corollary:

$$
\operatorname{vol} \mathcal{F}_{G}(1,0, \ldots, 0,-1)=1 \cdot K_{G}\left(m-n-o_{1},-o_{2}, \ldots,-o_{n}, 0\right)
$$

## Lidskii volume formula

Theorem (Baldoni-Vergne 08, Postnikov-Stanley - unpublished)
$G m$ edges, $n+1$ vertices, $a_{i} \geq 0$

$$
\begin{aligned}
\operatorname{vol} \mathcal{F}_{G}\left(a_{1}, \ldots, a_{n}\right)= & \sum_{\mathbf{j} \succeq \mathbf{0}}\binom{m-n}{j_{1}, \ldots, j_{n}} a_{1}^{j_{1}} \cdots a_{n}^{j_{n}} \\
& \times K_{G}\left(j_{1}-o_{1}, \ldots, j_{n}-o_{n}, 0\right)
\end{aligned}
$$

where $\mathbf{o}=\left(o_{1}, \ldots, o_{n}\right), o_{v}=\operatorname{outdeg}(v)-1$ and $|\mathbf{j}|=m-n$.

## Corollary:

$$
\operatorname{vol} \mathcal{F}_{G}(1,0, \ldots, 0,-1)=1 \cdot K_{G}\left(m-n-o_{1},-o_{2}, \ldots,-o_{n}, 0\right)
$$

Example: (CRY polytope)

$$
\operatorname{vol} \mathcal{F}_{k_{n+1}}(1,0, \ldots, 0,-1)=K_{k_{n+1}}\left(\binom{n-1}{2},-n+2, \ldots,-2,-1,0\right)
$$

## Lidskii lattice point formula

Theorem (Baldoni-Vergne 08, Postnikov-Stanley - unpublished)
$G m$ edges, $n+1$ vertices, $a_{i} \geq 0$

$$
\begin{aligned}
K_{G}\left(a_{1}, \ldots, a_{n}\right)= & \sum_{\mathbf{j} \succeq \mathbf{o}}\left(\binom{a_{1}-i_{1}}{j_{1}}\right) \cdots\left(\binom{a_{n}-i_{n}}{j_{n}}\right) \\
& \times K_{G}\left(j_{1}-o_{1}, \ldots, j_{n}-o_{n}, 0\right)
\end{aligned}
$$

where $|\mathbf{j}|=m-n, o_{v}=\operatorname{outdeg}(v)-1, i_{v}=\operatorname{indeg}(v)-1$

## Lidskii lattice point formula

Theorem (Baldoni-Vergne 08, Postnikov-Stanley - unpublished)
$G m$ edges, $n+1$ vertices, $a_{i} \geq 0$

$$
\begin{aligned}
K_{G}\left(a_{1}, \ldots, a_{n}\right)= & \sum_{\mathbf{j} \succeq \mathbf{o}}\left(\binom{a_{1}-i_{1}}{j_{1}}\right) \cdots\left(\binom{a_{n}-i_{n}}{j_{n}}\right) \\
& \times K_{G}\left(j_{1}-o_{1}, \ldots, j_{n}-o_{n}, 0\right)
\end{aligned}
$$

where $|\mathbf{j}|=m-n, o_{v}=\operatorname{outdeg}(v)-1, i_{v}=\operatorname{indeg}(v)-1$
Pitman-Stanley polytope:


$$
\mathcal{F}_{\Pi_{n+1}}(\mathbf{a})=\sum_{\mathbf{j} \succeq(1, \ldots, 1)}\left(\binom{a_{1}+1}{j_{1}}\right)\left(\binom{a_{2}}{j_{2}}\right) \cdots\left(\binom{a_{n}}{j_{n}}\right)
$$

## About the proofs

$$
\begin{aligned}
K_{G}\left(a_{1}, \ldots, a_{n}\right)= & \sum_{\mathbf{j} \succeq \mathbf{o}}\left(\binom{a_{1}-i_{1}}{j_{1}}\right) \cdots\left(\binom{a_{n}-i_{n}}{j_{n}}\right) \\
& \times K_{G}\left(j_{1}-o_{1}, \ldots, j_{n}-o_{n}, 0\right)
\end{aligned}
$$

- proof by Baldoni and Vergne uses residues
- proof by Postnikov-Stanley uses the Elliott-MacMahon algorithm


## About the proofs

$$
\begin{aligned}
K_{G}\left(a_{1}, \ldots, a_{n}\right)= & \sum_{\mathbf{j} \succeq \mathbf{o}}\left(\binom{a_{1}-i_{1}}{j_{1}}\right) \cdots\left(\binom{a_{n}-i_{n}}{j_{n}}\right) \\
& \times K_{G}\left(j_{1}-o_{1}, \ldots, j_{n}-o_{n}, 0\right)
\end{aligned}
$$

- proof by Baldoni and Vergne uses residues
- proof by Postnikov-Stanley uses the Elliott-MacMahon algorithm
- proof by M-Morales (2019) via polytope subdivision and generating functions


## About the proofs

$$
\begin{aligned}
K_{G}\left(a_{1}, \ldots, a_{n}\right)= & \sum_{\mathbf{j} \succeq \mathbf{o}}\left(\binom{a_{1}-i_{1}}{j_{1}}\right) \cdots\left(\binom{a_{n}-i_{n}}{j_{n}}\right) \\
& \times K_{G}\left(j_{1}-o_{1}, \ldots, j_{n}-o_{n}, 0\right)
\end{aligned}
$$

- proof by Baldoni and Vergne uses residues
- proof by Postnikov-Stanley uses the Elliott-MacMahon algorithm
- proof by M-Morales (2019) via polytope subdivision and generating functions
- proof by Kapoor-M-Setiabrata (2021) completely polytopal


## About the proofs

$$
\begin{aligned}
K_{G}\left(a_{1}, \ldots, a_{n}\right)= & \sum_{\mathbf{j} \geq \mathbf{o}}\left(\binom{a_{1}-i_{1}}{j_{1}}\right) \cdots\left(\binom{a_{n}-i_{n}}{j_{n}}\right) \\
& \times K_{G}\left(j_{1}-o_{1}, \ldots, j_{n}-o_{n}, 0\right)
\end{aligned}
$$

- proof by Baldoni and Vergne uses residues
- proof by Postnikov-Stanley uses the Elliott-MacMahon algorithm
- proof by M-Morales (2019) via polytope subdivision and generating functions
- proof by Kapoor-M-Setiabrata (2021) completely polytopal
- type D analogue by Maris-M (2023+) generalizing both of the above approaches


## Subdivision proof of Lidskii formulas

$$
\begin{aligned}
\operatorname{vol} \mathcal{F}_{G}\left(a_{1}, \ldots, a_{n}\right)= & \sum_{\mathbf{j} \succeq \mathbf{o}}\binom{m-n}{j_{1}, \ldots, j_{n}} a_{1}^{j_{1}} \cdots a_{n}^{j_{n}} \\
& \times K_{G}\left(j_{1}-o_{1}, \ldots, j_{n}-o_{n}, 0\right)
\end{aligned}
$$

Subdivide $\mathcal{F}_{G}(\mathbf{a})$ into cells of types indexed by $\mathbf{j}$.
$j_{1}+1$ multiple edges
$j_{2}+1$ multiple edges

volume of each type $\mathbf{j}$ cell : $\binom{m-n}{j_{1}, \ldots, j_{n}} a_{1}^{j_{1}} \cdots a_{n}^{j_{n}}$
\# times type $\mathbf{j}$ cell appears: $K_{G}\left(j_{1}-o_{1}, \ldots, j_{n}-o_{n}, 0\right)$

## Example subdivision



## Example subdivision


lower
dimen-
sional

## Example subdivision



## Example subdivision



## Example subdivision




## volume: <br> $2 \cdot 1+1 \cdot 2=4$.

attice points:
$0+3 \cdot 2=6$.

## Flow Polytopes - again

Start with a graph G.

## Flow Polytopes - again

Start with a graph $G$.

Fix an acyclic orientation of $G$.

## Flow Polytopes

Add a source $s$ and a sink $t$ connected to all the original vertices of $G$. Call the new graph $\widetilde{G}$.


## Flow Polytopes

Add a source $s$ and a sink $t$ connected to all the original vertices of $G$. Call the new graph $\widetilde{G}$.


Assign the source $s$ netflow 1 , the sink $t$ netflow -1 , and all other vertices netflow 0 .


A flow on $\widetilde{G}$ is an assignment of nonnegative real numbers to each edge of $\widetilde{G}$ so that at every vertex, outflow minus inflow equals netflow.


The flow polytope $\mathcal{F}_{\widetilde{G}}$ is the convex hull in $\mathbb{R}^{E(\widetilde{G})}$ of all flows on $\widetilde{G}$.

$$
\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{3}, \frac{1}{6}, 0, \frac{7}{12}, \frac{1}{4}\right) \in \mathcal{F}_{\widetilde{G}}
$$

## An Example Flow Polytope



## Recall: Volumes of Flow Polytopes

## Theorem (Baldoni-Vergne 2008, Postnikov-Stanley unpublished)

If $G$ is a graph on vertices $[0, n+1]$,

$$
\text { Vol } \mathcal{F}_{G}(1,0, \ldots, 0,-1)=K_{G}\left(0, d_{1}, \ldots, d_{n},-\sum_{i=1}^{n} d_{i}\right)
$$

where $d_{i}=\operatorname{indeg}_{G}(i)-1$ for each vertex $i$.
$K_{G}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is the Kostant partition function from representation theory. It equals the number of ways to write $\alpha$ as a sum of the positive roots $\left\{e_{i}-e_{j}:(i, j) \in G\right\}$.

## Subdividing Flow Polytopes

Flow polytopes can be subdivided combinatorially by performing a sequence of changes to the original graph.
A reduction on a graph $G$ is a construction of two new graphs $G_{1}$ and $G_{2}$ from a choice of two adjacent edges $(i, j),(j, k) \in G$ :


## Subdividing Flow Polytopes


*Not technically a picture of $\mathcal{F}_{\widetilde{G}}$, but the root polytope of $G$.

## Subdividing Flow Polytopes



## Subdividing Flow Polytopes



## Subdividing Flow Polytopes



## Subdividing Flow Polytopes



## Subdividing Flow Polytopes

More compactly, this subdivision procedure can be represented by a reduction tree.


## Subdividing Flow Polytopes

More compactly, this subdivision procedure can be represented by a reduction tree.


## Subdividing Flow Polytopes

More compactly, this subdivision procedure can be represented by a reduction tree.


## Subdividing Flow Polytopes

More compactly, this subdivision procedure can be represented by a reduction tree.


## Subdividing Flow Polytopes

More compactly, this subdivision procedure can be represented by a reduction tree.


## Subdividing Flow Polytopes

The individual graphs appearing in a reduction tree depend on the choice of cuts used to subdivide the flow polytope.


## Are there subdivision invariants?

On the one hand, we have seen the leaves of a reduction tree are dependent on choices made.

On the other hand, the simplices produced by the reduction process are always unimodular, so the number of leaves in any reduction tree is always the normalized volume of the flow polytope regardless of any choices.

## Question

Is there any stronger invariant across all the different ways to fully subdivide a flow polytope using reductions?

## Subdivisions to Degree Sequences

Is there an invariant of different subdivisions of a flow polytope?


## Subdivisions to Degree Sequences

Is there an invariant of different subdivisions of a flow polytope?


## Subdivisions to Degree Sequences

Is there an invariant of different subdivisions of a flow polytope?


## Subdivisions to Degree Sequences



## Subdivisions to Degree Sequences



Is $\{(3,0,0),(2,0,1),(2,1,0),(1,2,0),(1,1,1)\}$ dependent only on the original graph?

## Subdivisions to Degree Sequences



Is $\{(3,0,0),(2,0,1),(2,1,0),(1,2,0),(1,1,1)\}$ dependent only on the original graph?

Theorem (Grinberg 2017, M-St. Dizier 2017)
Yes!

## Right-Degree Sequences

## Definition

For a graph $G$, let $R D(G)$ denote the multiset of right-degree sequences of the leaves in any reduction tree of $G$.


## Right-Degree Polynomial

## Definition

Define the right-degree polynomial of $G$ by

$$
R_{G}(x)=\sum_{\alpha \in R D(G)} x^{\alpha} .
$$

$$
R D\left(P_{4}\right)=\{(3,0,0),(2,0,1),(2,1,0),(1,2,0),(1,1,1)\}
$$



Trees \& Pipe Dreams


## Schubert Polynomials (geometrically)

Geometrically, Schubert polynomials arise as distinguished representatives of the cohomology classes of the Schubert varieties in the flag variety of $\mathbb{C}^{n}$.

## Pipe Dreams

A pipe dream for $w \in S_{n}$ is a tiling of an $n \times n$ matrix with crosses + and elbows ${ }_{\Gamma}$ such that

- All tiles in the weak south-east triangle are elbows, and
- If you write $1,2, \ldots, n$ on the top and follow the strands (ignoring second crossings among the same strands), they come out on the left and read $w$ from top to bottom.

A pipe dream is reduced if no two strands cross twice.


Figure: A reduced pipe dream for $w=2143$.

## Schubert Polynomial of 1432




$\mathfrak{S}_{1432}=x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}$

The canonical reduction tree


## Noncrossing and Alternating Trees



A tree is alternating if it has no pair of edges


A tree is noncrossing if it has no pair of edges

## Noncrossing and Alternating Trees



## Theorem (M 2009)

Every tree $T$ has a canonical reduction tree whose leaves are exactly the alternating noncrossing spanning trees of the directed transitive closure $\bar{T}$ of $T$.


## Noncrossing Alternating Spanning Trees to Permutations

## Theorem (Escobar-M 2015)

For permutations of the form $w=1 w^{\prime}$ where $w^{\prime}$ is dominant (132-avoiding), there is an tree $T_{w}$ such that the reduced pipe dreams of $w$ are in bijection with the noncrossing alternating spanning trees of the directed transitive closure $\bar{T}_{w}$.

## Pipe dreams to noncrossing alternating spanning trees

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

## Pipe Dreams to Trees

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | 2 |  |
|  |  |  |  |  |  |
|  |  | 3 |  |  |  |
|  |  |  |  |  |  |
| 4 |  |  |  |  |  |

## Pipe Dreams to Trees

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | 2 |  |
|  |  |  |  |  |  |
|  |  | 3 |  |  |  |
|  |  |  |  |  |  |
| 4 |  |  |  |  |  |

## Pipe Dreams to Trees



## Pipe Dreams to Trees



## Pipe Dreams to Trees



## Right-Degree and Schubert Polynomials

## Theorem (Escobar-M 2015)

For permutations of the form $w=1 w^{\prime}$, where $w^{\prime}$ is 132-avoiding, there is a tree $T_{w}$ such that the right-degree polynomial $R_{T_{w}}$ is a reparameterization of $\mathfrak{S}_{w}$.

$$
\begin{aligned}
T_{1432} & \longrightarrow
\end{aligned}
$$

## Right-Degree and Schubert Polynomials



Similar properties?

## Schubert Polynomial Newton Polytopes

What kind of polytopes are the Newton polytopes of Schubert polynomials?

$\mathfrak{S}_{1243}=x_{1}+x_{2}+x_{3}$


$$
\begin{aligned}
& \mathfrak{S}_{13524}=x_{2} x_{3}^{2}+x_{1} x_{3}^{2}+x_{1}^{2} x_{3}+ \\
& x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{2} x_{3}+2 x_{1} x_{2} x_{3}
\end{aligned}
$$

## Schubert Polynomial Newton Polytopes


$\mathfrak{S}_{21543}=x_{1}^{3} x_{2}+x_{1}^{3} x_{3}+x_{1}^{3} x_{4}+x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+2 x_{1}^{2} x_{2} x_{3}+x_{1}^{2} x_{2} x_{4}+$ $x_{1}^{2} x_{3} x_{4}+x_{1} x_{2} x_{3}^{2}+x_{1} x_{2}^{2} x_{3}+x_{1} x_{2}^{2} x_{4}+x_{1} x_{3}^{2} x_{4}+x_{1} x_{2} x_{3} x_{4}$

## Generalized Permutahedra

- The standard permutahedron in $\mathbb{R}^{n}$ is the convex hull of all rearrangements of the vector $(1,2, \ldots, n)$.


## Definition (Postnikov 2005, Edmonds 1970)

A generalized permutahedron is any polytope obtained by deforming the standard permutahedron by moving the vertices in any way so that all edge directions are preserved.


## An Answer For $R_{G}$

## Theorem (M-St. Dizier 2017)

For any graph $G$, Newton $\left(R_{G}\right)$ is a generalized permutahedron.


## Schubert Newton Polytopes

Conjecture (Monical-Tokcan-Yong 2017)
For any $w \in S_{n}$, Newton $\left(\mathfrak{S}_{w}\right)$ is a generalized permutahedron.

## Schubert Newton Polytopes

Conjecture (Monical-Tokcan-Yong 2017)
For any $w \in S_{n}$, Newton $\left(\mathfrak{S}_{w}\right)$ is a generalized permutahedron.

- $\left\{\right.$ Schubert polynomials $\left.\mathfrak{S}_{w}\right\} \supseteq\left\{\right.$ Schur polynomials $\left.s_{\lambda}\right\}$


## Schubert Newton Polytopes

## Conjecture (Monical-Tokcan-Yong 2017)

For any $w \in S_{n}$, Newton $\left(\mathfrak{S}_{w}\right)$ is a generalized permutahedron.

- $\left\{\right.$ Schubert polynomials $\left.\mathfrak{S}_{w}\right\} \supseteq\left\{\right.$ Schur polynomials $\left.s_{\lambda}\right\}$
- Newton $\left(\mathrm{s}_{\lambda}\right)=\operatorname{Conv}($ all permutations of $\lambda)=$ permutahedron


## Schubert Newton Polytopes

## Conjecture (Monical-Tokcan-Yong 2017)

For any $w \in S_{n}$, Newton $\left(\mathfrak{S}_{w}\right)$ is a generalized permutahedron.

- $\left\{\right.$ Schubert polynomials $\left.\mathfrak{S}_{w}\right\} \supseteq\left\{\right.$ Schur polynomials $\left.s_{\lambda}\right\}$
- Newton $\left(\mathrm{s}_{\lambda}\right)=\operatorname{Conv}($ all permutations of $\lambda)=$ permutahedron
- Newton $\left(\mathfrak{S}_{w}\right)$ should be a generalized permutahedron


## Schubert Newton Polytopes

## Conjecture (Monical-Tokcan-Yong 2017)

For any $w \in S_{n}$, Newton $\left(\mathfrak{S}_{w}\right)$ is a generalized permutahedron.

- $\left\{\right.$ Schubert polynomials $\left.\mathfrak{S}_{w}\right\} \supseteq\left\{\right.$ Schur polynomials $\left.s_{\lambda}\right\}$
- Newton $\left(\mathrm{s}_{\lambda}\right)=\operatorname{Conv}($ all permutations of $\lambda)=$ permutahedron
- Newton $\left(\mathfrak{S}_{w}\right)$ should be a generalized permutahedron


## Theorem (Fink-M-St. Dizier 2017)

The Newton polytopes of the Schubert polynomials are generalized permutahedra.

## A Saturation Property of $R_{G}$

What does $R D(G)$ look like? Specifically, how do the points in $R D(G)$ sit inside the Newton polytope of $R_{G}$ ?


Theorem (M-St. Dizier 2017)
Newton $\left(R_{G}\right)$ is a generalized permutahedron whose integral points are exactly $R D(G)$.

## Coefficients

Newton $\left(\mathfrak{S}_{143625}\right)$


Question
Can there be zeros in the polytope?

## Saturated Newton Polytopes

## Definition (Monical-Tokcan-Yong 2017)

A polynomial $f$ is said to have saturated Newton polytope
(SNP) if every integer point in the Newton polytope corresponds to a monomial with nonzero coefficient in $f$.

$$
\mathfrak{S}_{13524}=x_{2} x_{3}^{2}+x_{1} x_{3}^{2}+x_{1}^{2} x_{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{2} x_{3}+2 x_{1} x_{2} x_{3}
$$

$$
x_{1} x_{2}^{2} \quad x_{1}^{2} x_{2}
$$



## SNP in Algebraic Combinatorics

## Theorem (Monical-Tokcan-Yong 2017)

The following all have SNP:

- Schur polynomials
- Skew-Schur polynomials
- Stanley symmetric functions
- ( $q, t$ ) evaluations of symmetric Macdonald polynomials


## SNP in Algebraic Combinatorics

## Theorem (Monical-Tokcan-Yong 2017)

The following all have SNP:

- Schur polynomials
- Skew-Schur polynomials
- Stanley symmetric functions
- ( $q, t$ ) evaluations of symmetric Macdonald polynomials


## Conjecture (Monical-Tokcan-Yong 2017)

The following all have SNP:

- Schubert polynomials
- Key polynomials
- Double Schubert polynomials
- Grothendieck polynomials


## SNP in Algebraic Combinatorics

## Theorem

The following all have SNP:

- Schubert polynomials (Fink-M-St. Dizier 2017)
- Key polynomials (Fink-M-St. Dizier 2017)
- 1w Grothendieck polynomials (M-St. Dizier 2017)
- Symmetric Grothendieck polynomials (Escobar-Yong 2017)
- Double Schubert, some K-polynomials (Castillo- Cid-Ruiz -Mohammadi-Montaño 2021, 2022)


## More About Coefficients

SNP says there are no zeros within the Newton polytope. How are the nonzero coefficients distributed?


## More About Coefficients

SNP says there are no zeros within the Newton polytope. How are the nonzero coefficients distributed?


Idea: look along lines in root directions!

## Unimodal and Log-Concave Sequences



Unimodal: $a_{0} \leq a_{1} \leq \cdots \leq a_{j}$ and $a_{j} \geq a_{j+1} \geq \cdots \geq a_{n}$ for some $j$

Log-concave: $a_{i}^{2} \geq a_{i-1} a_{i+1}$ for all $i$.
(Positive and log-concave implies unimodal)

## Question

Do the coefficients form unimodal sequences along lines in root directions? Even better, are they log-concave?

## On the coefficients of Schubert Polynomials

$$
\text { Let } \mathfrak{S}_{w}=\sum_{\alpha} C_{w \alpha} x^{\alpha} .
$$

Theorem (Huh-Matherne-M-St. Dizier 2019)
For any $w \in S_{n}$ and $i, j \in[n]$,

$$
C_{w \alpha}^{2} \geq C_{w, \alpha+e_{i}-e_{j}} C_{w, \alpha-e_{i}+e_{j}}
$$

## On the coefficients of Schubert Polynomials

$$
\text { Let } \mathfrak{S}_{w}=\sum_{\alpha} C_{w \alpha} x^{\alpha}
$$

Theorem (Huh-Matherne-M-St. Dizier 2019)
For any $w \in S_{n}$ and $i, j \in[n]$,

$$
C_{w \alpha}^{2} \geq C_{w, \alpha+e_{i}-e_{j}} C_{w, \alpha-e_{i}+e_{j}}
$$

## Question

What other polynomials from algebraic combinatorics have Lorentzian normalizations?

The End!

## Happy Birthday Michèle!



